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Abstract. In a sectorial-expansion analysis the shell can be described as a series of independent helicospirals

joining homologous points on the shell’s surface. In actual shells, these helicospirals are longitudinal

ornaments. Therefore, the aperture is considered as a set of points, obtained at its intersection with these

ornaments. Any apertural segment (between two consecutive points) is potentially able to expand or contract

independently during growth. With the aim of quantifying this change in length in any coiled shell, a

differential parameter (S
c ) has been devised. S

c
measures the rate at which any apertural chord of length D

varies with regard to a particular spiral length ( Lm). This morphometric analysis has been performed on the

gastropod Distorsio reticulata. The ontogenetic distribution of S leads us to conclude that the distorted,

periodically bulging spiral of this species is constructed by alternatively expanding and contracting the

apertural mantle. This striking morphology might allow the animal to retract the body deeply within the shell

as a passive defence and improves its stability on the substrate.

The existing methods of theoretical shell morphology imply major differences in the principles that

generate shell morphologies (for a general survey see Savazzi 1990). Wewill briefly comment on two
alternative ways of considering the shell. In the tube models, shells are obtained by the motion of

a generating curve along a trajectory. This trajectory may define the equiangular spiral (Raup 1961,

1962, 1966, 1967; Raup and Michelson 1965), or be given by more complicated differential

equations (Okamoto 1988a, 19886, 1988c; Ackerly 1989a, 19896; Illert 1989). A limitation of these

models is that cross-sections and apertures, usually circular, either remain geometrically similar

throughout ontogeny or change according to simple allometric laws. On the other hand, in the

models of McGhee (1978, 1980a, 19806) and Savazzi (1985a, 19856, 1987) the shell is described as

a set of independent helicospirals and the aperture at each growth stage is obtained by joining the

corresponding points of adjacent helicospirals. Since these models are based on Raup’s equiangular

spiral, they do not cover the whole spectrum of shell morphologies (in contrast to the moving
reference frame models of Okamoto, Ackerly and Illert), although aperture shape can be made to

vary in many ways by allowing the different helicospirals to differ in their parameters.

In the sectorial-expansion analysis of Checa (1991) the second alternative was followed, but each

helicospiral, rather than being a theoretical line, links homologous points on the shell surface. In

actual shells, sequences of homologous points are longitudinal ornaments (mainly ribs and
striations). When meeting the cross-section or aperture, the helicospirals bound sectors which may
evolve independently one from another. On this basis a parameter was devised (the sectorial-

expansion rate) to estimate the rate (per radian) at which a cross-sectional sector expands or

contracts in helically coiled shells. Although coiling was not directly described by this analysis, the

sectorial-expansion rate provided useful information about small-scale changes taking place at the

shell edge. The main objective of this morphometric analysis was the study of the biological

generating curve, while earlier theoretical models concentrated mainly on the theoretical generating

curve.

Since Checa’s (1991) sectorial-expansion rate derives from Raup’s model, its measurement is

restricted to cross-sections of shells coiling around a single axis. Therefore, defining another
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sectorial-expansion rate obtainable at the aperture of any shell morphology is of great interest

within this research programme. The present study is mainly concerned with obtaining such a

parameter and checking what information it can provide about shell morphology and morpho-
genesis. There is a priori one limitation inherent in this methodology: it is restricted to shells

displaying sequences of homologous points on their external or internal surfaces, and the only

features recognizable as such are longitudinal ornaments (sculpture and colour bands). This identity

is the base of some morphogenetic studies at the cellular level (see e.g. Meinhardt 1984; Meinhardt

and Klinger 1987).

CALCULATIONOF THE SECTORIAL-EXPANSIONRATE

Geometrical principles

A sectorial-expansion rate is conceived as the rate at which a given apertural or cross-sectional

sector chord length (D) varies with respect to another shell parameter. To allow sectors of the same
or different shells to be compared, this rate must be standardized. Sector area is also a suitable

parameter, but its calculation and standardization are more difficult and the result is no more
informative than D.

The first question to be asked is: with respect to which parameter must D be calculated? If the

resulting rate is to be of general applicability, the revolution angle can be excluded, because many
shells do not coil according to the equiangular spiral or do not coil at all. Another potential

parameter is the total length of the shell or growth stage, but this would require a knowledge of the

exact function associated with, for instance, the shell’s centre of gravity, which would make the

procedure impractical.

We will apply another principle. The shell is seen as a succession of growth increments of

infinitesimal thickness, and only the growth direction at each point of the aperture is taken into

account. The growth direction can be represented by a vector originating at the point and coinciding

with the tangent to the corresponding trajectory of homologous points (a similar vectorial approach

can be found in Seed 1980, fig. 8). Each sector is then bounded by two such vectors. Additionally,

a triangle is formed by the intersection of the aperture and both tangents (Text-fig. 1). In general

these tangents will be non-coplanar, so what we actually do is project them onto an intermediate

plane.

In very particular cases, the distances at which these tangents intersect (L
1

and L
2

in Text-fig. 1)

are equivalent to the distances at which the respective trajectories intersect (provided that a

helicospiral can be locally adjusted to these trajectories). This is true when both trajectories coil

around the revolution surface of a straight line (cone or cylinder), provided that the tangents are

traced at the same coiling angle. This can be demonstrated by a simple experiment (Text-fig. 2): the

ends of two wires are attached at two points aligned in parallel to the axis of a cylinder, around

which the wires are wound in such a way that they meet towards the centre. The tangents to the

wires (and hence to the functions they describe) are the straight traces left by the wires when the

cylinder rolls on a planar surface. It is thus evident that the tangents will intersect at the same

distances as do the wound wires. The same applies to two wires wound around a cone, that is,

logarithmic helicospirals. In both cases the local functions followed by the homologous-point

successions at the shell aperture may be substituted by their tangents. This is not commonly the case,

since most trajectories in actual shells coil around different cones.

A certain analogy can be established between our methodology and finite-element analysis, in

which a three-dimensional figure is converted into many planar polygons (usually triangles). Actual

shapes are better approximated by increasing the number of triangles. In our case, reducing the

relative size of D leads to the same effect.

Sectorial-expansion rate S'

The triangle depicted in Text-figure 1 has three sides, two of which ( L x
and L

2 ) have already been

defined. The third (D) is the chord of the arc. From this construction we may obtain the expansion
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text-fig. 1. Triangular arrangement between two series of homologous points (ribs) at the apertural flaring of

Distorsio reticulata Roding (MNCN.P-M-4.317a). For symbols see text. Camera lucida drawing.

text-fig. 2. The wound wires experiment : two wires are wound around a cylinder so that they meet at a given

central point. Straight traces left by the wires (previously impregnated with ink) when the cylinder rolls on a

white paper sheet are the tangents to the wires. It is clear that these tangents intersect at the same distances

(A and A') as the two wires (B and B).

rate of D provided that we find an adequate parameter with respect to which we can calculate the

derivative of D. The best choice seems to be a combination of the lengths of both L
x

and L 2 , for

D increases linearly with either of them. The simple average of L
x

and L
2

is not representative of

the average trajectory length; we simply have to think of an isosceles triangle, in which L
1

and L
2

are always longer than any other straight trajectory lying between them. It will be better to consider

the mean length (L m) of the array of lines extending from the intersection of L
x

and L
2

to D (Text-

fig. 3a), since D/L m in any triangle is the single sum of the many (D/L m) i
obtained when the triangle

is partitioned into n portions of a (z varying from 1 to n), so that the additive property is kept.
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a

f* HT)-dT = Lm.

a

B

D y o a

text-fig. 3. Determination of Lm. a, an array of lines with different lengths (L) are traced from the vertex of

angle a to D, taking an a/n constant step, b, L defines a function L( r), r being the angle between L
1

and any

line of the fan, and thus varying from 0° to a; this leads to the equation inside the bivariate plot, where Lm
is the mean length of the array of lines.

Lm can be obtained by tracing lines at a constant step of either an a or D subdivision. Both

possibilities are equally suitable, and we have no specific reason for choosing the first. Let r be the

angle at a from L
x

to L
i?

so that L( r) = and r = <xjn (Text-fig. 3b). Then:

L,'m L(r) dr ( 1 )

Additionally, by applying the sine rule to Text-figure 3b,

(2)

so that.

(3)

the solution of which gives:

sin /? |~( 1 + cos B) ( 1 + cos y)——In — b— -y (4)

where a is in radians.

From here:

( 5 )
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Turning again to the triangle D, L
2 , we may also state:

so that, finally:

D = sin a
1

sin y

D =

sin P sin yin

2a sin a

(1 +cos/?)(l +cosy)

(1 —cos/?)(l —cos y)

Now we may easily find the derivative dD/dL m,
here termed S':

S' = dD

dLm
sin /? sin yin

2a sin a

(1 + cos /?) ( 1 + cos y)

(1 —cos/?)(l —cos y)

( 6 )

(7)

( 8 )

Measurement in actual shells

In consideration of the instrumental problems involved in directly determining tangents to the spiral

ribs at apertural points, an indirect procedure has been tested. When observing actual shells one
immediately realizes that a quadrangular arrangement arises by taking two pairs of homologous
points between two consecutive temporary apertures (either growth lines or other growth-

conformable radial ornaments). In this way the triangle corresponding to each D can be
reconstructed from five measurements (a, b, c,d,e; see Text-fig. 1 ) in each quadrangle or cell formed
by the crossing of two pairs of longitudinal and radial ornamental elements.

Applying the cosine rule to Text-figure 1,

and

cos/1 = a 1 + d 2 —e
2

2da
cosyj =

2 ce
cos y 2

a 2 + e
2 —d~

2 ae

D = a, y = y 1 + y 2 ,
a =180° —

(fl + y)

The values of a , /I and y can then be substituted in (8). Note that the five measurements actually

define a quadrilateral in three dimensions, which we consider planar by projecting it qualitatively

onto the focal plane. In this way S' is not the expansion rate of the adoral rib segment ( a ), but rather

of a segment intermediate between a and b. This procedure can be used with only those shells in

which there are aperture-conformable ornaments.

Standardized sectorial-expansion rate S

In brief. S' (see equation [8]) provides the rate at which a given D expands as Lm enlarges. In its

present form S' depends monotonically on the measured distance D. For sectors of different D to

be compared S' must be standardized. This problem can be tackled by considering that different S'

values would be comparable if the respective D lengths were the result of expanding identical initial

lengths. S' is thus divided by the original length of the sector chord, namely the length b of the first

quadrangle considered, in an apex-to-aperture direction (here named b
x

). This procedure only

allows a comparison of sectors within the same shell, provided that every b
I

is measured at the same
growth stage (along the same growth line or radial rib). S' /b

l
allows comparison neither of different

growth stages on a single shell (provided that a different /?, is used) nor of different specimens. Thus
we must standardize b

l
itself in order to specify its relative size. The best alternative seems to be to

divide b
Y

by the total initial apertural length ((> IT ) at the stage where was measured. Thus,

( 9 )
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text-fig. 4. Relation between overall expansion rate (given by the apical angle) and sectorial-expansion rate

(S) in three isometric orthoconic shells, a and c expand at the same rate, and faster than b. Correspondingly

5A = Sc > SB .

This can be better understood with an example of orthoconic shells with different overall expansion
rates. For the isometric shells of Text-figure 4:

^mA ^mC ^mB> ^ ^B’ ^IA ^IB ^ICi ^ITA ^ITB ^ITC’

then

:

SA —Sc > SB ,

as is apparent from the three cases illustrated.

Text-figure 5 displays the values of S on a plot of a against p—y, for a fixed value of b lT /b v As
can be seen, the surface obtained is a slope which is highest at that vertex of the horizontal plane

at which a approaches 180° and fi —y tends to 0°, and descends towards the axis of a = 0°. In

brief, S increases with <x and, for a given a value, with the extreme values of /? —y (0° or 180° —a).

Text-figure 5 does not display negative values of S. These are obtained when a > 180°, in which case

a is located past the aperture (D) onwards in the direction of growth. S is not shown near where

a = 180° and p—y= 180°, since these yield infinite S values. The flat left half of the plot denotes

a field of impossible values, inside which x + p+y > 180°.

Finally, one could question whether the actual length (i.e. along the margin) instead of the sector

chord length ( D) should be considered. There are no simple formulae of the above type for the

marginal length, and large deviations may be expected, due both to the value of this length (always

greater or, exceptionally, equal to D) and to that of the corresponding mean spiral length (greater

than L m if the aperture is projected, and lesser if invaginated). For similar reasons, S is less

representative of the arc expansion when both the relative magnitude of D (compared to the total

apertural length) and the complexity of the aperture (presence of projections and invaginations)

increase. Teratological deviations of the ornament (e.g. as a result of injuries) may also lead to

disruptive results.

Corrected sectorial-expansion rate S
c

The condition of isometry for coiled shells implies that the sectorial-expansion rates are constant

around the whorl cross-section or aperture, provided that they are calculated against the revolution

angle (see Checa 1991); in contrast, S is the relation D versus one linear length (L m). Since in an

ideally isometric shell Lm is a measure of the spiral length, Lm will increase with the distance to the

axis of coiling and to the apex for a given growth stage (see Checa and Padilla 1990); therefore S
will decrease abaxially and towards the columella in gastropods. Therefore, for comparative

purposes, a correction factor for differences in the spiral length must be introduced.
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text-fig. 5. Surface obtained by plotting the values of S between 3° < a < 177° and 3° < /? —y < 177°, for a

constant value b
t
/b lT = 0-05. The side facing the reader should be seen as concave.

Given the measurement procedure described above we will correct according to the relative length

of longitudinal ribs for each growth increment (i.e. the cell’s longitudinal distance). Since a and b

of each cell are limited by common sides (L
l

and L
2 ;

see Text-figure 1) we can define, besides Lm,

another / m between b, l
x

and /
2

:

sin /?' (1 +COS/00 + cos/)

(1 —cos/T)(l —cosy')

where /?', / and can easily be calculated as

( 10 )

sin / ^siny 1?
/?' = 180° —(a + /),

sin/
l

x
- b- .

sin a

As the absolute length increment of each cell after an aperture motion between two consecutive
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radial ribs we will take Lm—l m. The relative length increment at the zth cell can be obtained by
dividing the absolute increment by the mean value of the many L m—l m of the same column:

It must be emphasized that this correction method can only be applied if the relative apertural

orientation between consecutive apertures remains more or less the same (as in Distorsio).

Otherwise, Lm—l m will additionally decrease towards the intersection of the aperture planes, since

a approaches b gradually. When apertural orientation and/or shape change ontogenetically special

procedures must be implemented.

SECTORIAL-EXPANSIONANALYSIS OF DISTORSIO

The morphology and adaptive significance of Distorsio has been analysed and discussed at length

by Linsley (1977), Linsley and Javidpour (1980), Stanley (1988) and Ackerly (19896). We have

chosen this gastropod because it displays a highly distorted morphology due to the periodic inflation

and deflation of the spiral tube (usually every two-thirds of a whorl). Given its complexity this

morphology can hardly be the subject of traditional morphometric analyses.

Material and measurement technique

We have systematically measured three specimens of Distorsio reticulata Roding, although

complementary observations were made on another three specimens of the same species and two of

D. anus (Lamarck). All this material is Recent, from the East Pacific (Philippines), and is presently

housed at the Department of Stratigraphy and Palaeontology of the University of Granada
(abbreviated PUG) and the National Museum of Natural Sciences, Madrid (MNCN). D. reticulata

bears a typically reticulated ornamentation (Text-fig. 6) formed by the crossing of radial (parallel

to the aperture) and longitudinal ribs. Small knobs form at the intersection of two ribs. The
determination and tracing of homologous points is much eased by the existence of longitudinal lines

with slightly positive relief which occur superimposed onto the main ornament. In well-preserved

specimens they coincide with brown colour lines and seem to be sites of emergence of periostracal

hairs.

From our three specimens we have analysed only the last growth episode (between the ultimate

and penultimate constrictions). For an easy identification of ornamental cells of the grid, a matrix

labelling has been used. In this way, 17-18 (depending on the specimen) longitudinal rows by 16-19

radial columns of cells have been distinguished (see Text-figs 6-7). Further towards the siphonal

canal the great relative width of spiral ribs does not allow enough precision. Given the close

morphological similarity between the three specimens, rows represent approximately homologous
shell portions in each of them. All cells are formed by first-order ribs, except for those bounding

rows 2-3 and 5-6.

Each cell of the reticulum was drawn with a Wild camera lucida M8 at 25-fold magnification, the

shell being continuously reorientated so that each quadrangle was qualitatively considered to lie

parallel to the stage. Since quadrangles are actually three-dimensional, an approximation is made
in this respect. The five measurements for each cell (see above) were then taken with a 0-5-mm

graded ruler. To test the accuracy of this procedure, we remeasured specimen PUG.G. 12 with a

Wild binocular microscope M7S, attached to a Sony Magnescale unit for measuring stage

displacement (precision =
1 /mi). Both kinds of values were only exceptionally found to differ by

( 11 )

where n is the number of cells per column.

Finally, S can be recalculated as

( 12 )
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1617

text-fig. 6. a—c. Schematic morphology of Distorsio reticulata Roding (PUG. G. 12; same specimen as in

Checa 1991, fig. 4). Lateral (a, c) and apical (b) views; numbers on a and B refer, respectively, to the 17 rows

by 19 columns of reticular cells distinguished; white cells have yielded S
c < 0, medium grey cells 0 < S

c < 2 and
dark cells S

c
>2 (compare with Text-fig. 7a). Abbreviations: c, constriction; f, flaring. Camera lucida

drawings.

more than 15 per cent, the major differences being found close to the siphonal canal, probably owing

to the diffuse nature of ribs at this zone. The values for were taken at column 1. In all, 5655

measurements were taken, the mathematical processing of which was performed by a short

computer program, written in TURBOPASCAL for an IBM PC, which is available on request

from the authors.

Discussion and constructional interpretation

The sectorial-expansion maps are displayed in Text-figure 7. They have been obtained by plotting

curves of equal 5
C

values on a row-column diagram. Curves have been smoothed by cubic splines

(tension factor = 0-5). Commercial software has been used for the representation.

A marked similarity exists between the three maps, so that a commonmorphogenetic pattern can

be inferred. From a constructional point of view, the following phases can be differentiated from

the penultimate towards the last varix.

1. The growth period begins with a fast-expansion phase which occupies some 3 to 4 columns.

2. This expansion decelerates gradually to give way to a contraction phase affecting 8 to 9

columns in the shell half close to the adapical suture and centred in the growth episode; abapically

this phase narrows at mid-shell in MNCN. P-M .4. 3176 (Text-fig. 7c) or becomes interrupted in
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I 2 3 4 5 6 7 8 9 10 1 1 12 13 14 15 16 17

text-fig. 7. Sectorial-expansion (S
e ) maps for the last growth episode of three specimens of Distorsio reticulata

Roding. a, specimen PUG. G. 12; same specimen and cell numbering as in Text-figure 6. b-c, specimens

MNCN.P-M.4.317a (b) and MNCN.P-M.4.3176 (c). Dots mark sectors affected by predatory shell

breakage.

PUG.G. 12 and MNCN.P-M.4.317a (Text-fig. 7a-b) to spread or reappear close to the siphonal

canal.

3. Farther towards the aperture another narrow expansion phase (3 to 4 columns) takes place,

which does not reach the siphonal canal.

4. A narrow, elongate depression is placed at the penultimate column, and never surpasses row
11 or 12.

5. The last column displays very high S
c

values (especially the peak at row 1), which lessen once

more abapically along the column.

Phases 1 and 2 correlate well to the bulging and deflation stages of the spiral tube (and, by

extension, of the soft body) during the growth episode (compare Text-figs 6, 7a). It is thus evident

that alternate periods of fast expansion and low expansion or contraction of discrete sectors of the

aperture during growth cause the distorted coiling typical of Distorsio , no additional considerations

being needed. This differs from Linsley and Javidpour’s (1980) and, particularly, Ackerly’s (19896)

conclusion, in his analysis by stereographic projection, that there is a cyclic shift in the orientation

of the coiling axis. Even though this process would also imply sectorial-expansions, these would
presumably take place exclusively both at the adapical sutures and near the siphonal canal, but will

never yield the above complex pattern. Phase 4 coincides in all cases with the pre-apertural

constriction (which extends up to row 11 in PUG.G. 12, or 12 in MNCN.P-M.4. 317a-6), which

is, no doubt, caused by a sudden contraction of the soft body. Phase 5, on the other hand, implies

a bursting expansion leading to the apertural flaring.

Some irregularities are worth mentioning. The one along the most adapical row (number 1) can

be attributed to its adaptation to the ornamentation of the previous whorl. Additionally, predatory

shell breakage (see below) induces other irregular fields in Text-figure 7b and, especially, 7c (sectors

affected are indicated by dots).

All these features fit well within the view of the mantle as a pneu, that is, an elastic membrane.
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the shape of which is maintained by internal hydrostatic pressure (see Savazzi 1990). Nevertheless,

there seem to be differences between different parts of the aperture. Weshould remember that all

phases are interrupted or lessened at about the eleventh or twelfth row (this being also the abapical

limit for constrictional invaginations). In our specimens this strip is a bending zone of the shell

marking the limit between the columellar and the remaining convex part of the aperture. The latter

is the only one which seems to be able to inflate and deflate periodically to a great extent, thus

displaying an apparently pneumatic behaviour. The columellar part of the aperture imitates this

behaviour, but to a much lesser degree. This feature would imply that Distorsio' s apertural mantle

either behaves as a double-pneu (see Savazzi 1990, p. 205) or as a single-pneu with different

expansion capabilities throughout. To decide between these alternatives, further studies on the

mechanical properties of the mantle are necessary.

Functional considerations

Linsley (1977) argued that distortion from normal helical growth allows Distorsio to protect the

aperture by maintaining it in a plane tangential to the preceding whorl and parallel to the axis of

coiling. However, neither is the aperture parallel to the coiling axis in D. reticulata (they meet at 10°

to 12°), although it is in D. anus , nor is distortion strictly necessary for this purpose (in fact other

cymatiids manage without distortion). Therefore this functional hypothesis seems rather weak.

Coincidentally, the three specimens of D. reticulata labelled MNCMdisplayed very conspicuous

predatory features, indicating that the gastropod survived peeling back of the shell of at least

between one-fourth and one-thirteenth of a revolution. The limit of peeling is always close to the

penultimate varix. Although our statistics are not significant, this kind of predation may be frequent

in this genus and the soft body must have been able to retract deeply within the shell (in much the

same way as in high-spired, many-whorled turritelliform gastropods). We suggest here that the

periodic bulgings of the spiral may partly account for this ability by providing extra room for the

body when retraction takes place.

Further, it is evident from the apical view (see Text-fig. 6b) that distortion shifts the shell's centre

of gravity towards the substrate and closer to the coiling axis, compared to normal coiling. This

accounts for a greater stability, which is enhanced by increasing the lever arm of the shell through

apertural expansions and columellar calluses (which in D. anus may encircle the whole aperture).

Finally, the alternation of constrictional invagination and apertural flaring corrugates and thus

might strengthen the final aperture of each growth episode.

GENERALCONCLUSIONS

The present sectorial-expansion rate Sc
can be considered as a morphometric methodology which

enables us to quantify local changes in shape along the biological generating curve (aperture).

Although the mode of coiling cannot be unequivocally described in this way, we are dealing with

a high-resolution tool which is useful in morphological and morphogenetic studies. The potential

applications of this methodology are many. Since the sectorial-expansion maps depicted above may
in fact be regarded as aperture-behaviour maps, they allow us to discern the constructional basis

(expansion of the aperture versus change in the coiling programme; see Checa 1991) of a given

ontogenetic change. Although we have been dealing here with shells, we should stress that parts of

them (e.g. individual ornaments) or other taxa (e.g. polychaete jaws, mammal teeth) are potential

subjects of study for modified versions of S
e ,

provided that an ontogenetic record exists and that

trajectories of homologous points are traceable. Finally, the time-consuming nature of this method

must not prevent it from being employed as an additional criterion in systematic studies.
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